From algebraic sets to monomial linear bases by means of combinatorial algorithms
نویسندگان
چکیده
Let K be a eld; let P K n be a nite set and let =(P) Kx 1 ; : : :; x n ] be the ideal of P. A purely combinatorial algorithm to obtain a linear basis of the quotient algebra Kx 1 ; : : :; x n ]==(P) is given. Such a basis is represented by an n-dimensional Ferrers diagram of monomials which is minimal with respect to the inverse lexicographical order i:l:. It is also shown how this algorithm can be extended to the case in which P is an algebraic multiset. A few applications are stated (among them, how to determine a reduced Grr obner basis of =(P) with respect to i:l: without using Buchberger's algorithm).
منابع مشابه
Monomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملAsymptotic behaviour of associated primes of monomial ideals with combinatorial applications
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,ld...
متن کاملDegenerating Geometry to Combinatorics : Research Proposal for
A central appeal of algebraic geometry is that its functions are polynomials which can be written down as finite expressions. This makes the theory naturally combinatorial, in that polynomials are made up of a finite number of terms which interact through discrete rules. In practice, however, the operations performed on these polynomials are usually too complex for combinatorial methods to be o...
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملA Concise Proof of the Kronecker Polynomial System Solver from Scratch
Nowadays polynomial system solvers are involved in sophisticated computations in algebraic geometry as well as in practical engineering. The most popular algorithms are based on Gröbner bases, resultants, Macaulay matrices, or triangular decompositions. In all these algorithms, multivariate polynomials are expanded in a monomial basis, and the computations mainly reduce to linear algebra. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 139 شماره
صفحات -
تاریخ انتشار 1995